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Introduction

Microcavity structure

Experiment: Time & spectrally resolved transmission imaging 

Theoretical Model

Planar semiconductor microcavities create a confined light mode in 
one direction by Bragg reflectors, while the in-plane motion of the 
light is free in ideal structures.  The Bragg reflectors can be designed 
to a reflection coefficient arbitrarily close to unity, in which case the 
properties of the light modes are dominated by in-plane disorder, 
which determines the cavity linewidth measured, both for the 
inhomogeneous broadening and the homogeneous broadening of the 
modes
We have investigated this in-plane disorder on an empty microcavity 
of a high Bragg reflectivity, and identify the cross-hatch dislocation 
pattern formed due to the lattice mismatch as main disorder 
mechanism. 

Polariton dynamics in planar microcavities: 
The effect of cross-hatch disorder
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• sample in helium cryostat at 10K
• excitation from substrate side at normal incidence
• spot size ~1mm
• 500fs laser pulses (3.9meV FWHM) centred to the 
cavity resonance

(A

• grown by molecular beam epitaxy (MBE)
• 21 period GaAs/AlAs Bragg mirrors 
• 1 ? GaAs cavity
• resonant wavelength 900nm at low temperatures
• negligible cavity gradient <100µeV/mm (rotation during growth)
• backside antireflection coated (? /4 HfO2)

λ0=900nm, λ=λ0/n=257nm

λ

GaAs substrate

From Appl. Phys. Lett. 86, 111105 (2005) 

Transmission electron microscopy 
of a similar structure

21 periods of GaAs/AlAs, GaAs cavity

Calculated Reflectivity 
(Transfer matrix, normal incidence)

Structure of investigated cavity
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• predicted cavity linewidth 90µeV for nominal refractive indices of GaAs 3.498 
and AlAs 2.928 (at 900nm, 4K, J. Appl. Phys. 87, 7825)
• Measured linewidth down to 45µeV
• within 1% accuracy of the refractive indices, minimum predicted linewidth 
42µeV: negligible effect of intrinsic absorption and scattering
• Confirmed by Reitzenstein et al, Appl. Phys. Lett. 90, 251109 (2007): linewidth 
of 8µeV observed in >30 pair Bragg AlAs/GaAs micropillars 
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Spatially integrated transmission, 0.3meV FWHM Spatially resolved transmission intensity 
Excitation & detection polarization along x (→→)
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• excitation spot envelope visible
• structure dominated by stripes along [110], [110]
• stripe length ~1mm, shorter in [110] direction
• stripe density less in [110] direction
• additional point-like structures, density 2·104/cm2

• Origin of structure seem to be dislocations:
• Lines made by misfit dislocations
• points made by pure threading dislocations ?  
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Time-resolved transmission intensity imaging (→→)

• initially homogeneous transmission: spatial structure due to in-plane polariton dynamics, as opposed to structured mirror transmissivity
• for long times polaritons “localize”, i.e. the lifetime of these localized polariton states is longest 

Spectrally resolved intensity imaging (→→)
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• spatially inhomogeneous distribution of 
resonance energy and width
• small overall gradient of energy ~100µeV/mm 
due to thickness gradient (10-4/mm)
• linewidths down to 45µeV, below nominal 
cavity linewidth (20µeV resolution)

Resonance energy 1.379eV+?
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Analysis of long-lived polariton state
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• Selected spot of long temporal decay shows extended average decay time
• Local emission spectrum linewidth in agreement with increased decay time
• Spectra al all long-lived spots have narrorw linewidth
• localized polariton states form in a local minimum of the energy landscape

Polarization dynamics: Only significant for light polarizations diagonal to {110}: Cavity birefringence has crystal axis symmetry. Data for \ excitation 
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I_ • long-range distribution of birefringence: related 
to anisotropic strain relaxation: more misfit-
dislocations along [110] than [110]
• strong birefringence local to stripes: strong 
anisotropy of local in/plane strain
• Polarization randomized after long time

_

• Polariton properties dominated by long-range in-plane disorder, created by 
misfit dislocation in the strained AlAs/GaAs system (0.14% lattice mismatch)

From Y. Yamamoto, F. Tassone, and H. Cao: 
Semiconductor Cavity Quantum Electrodynamics,

• 2D particles with finite mass, with effective potential V(R)
• Position dependent damping γ(R) due to scattering into 

lossy photon modes
• 2D Schrödinger equation for the polariton polarization

Potential Model:

Figures from J. Appl. Phys. 91, 1935

• Potential created by superposition of 
infinitely extended hatches along {110}
• Hatch density different in [110] and [110]
• Hatch potential is superposition of

• Asymmetric surface modulation αVa

• Symmetric strain component βVs
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yV : exchanging x & y

Asymmetric surface modulation Symmetric strain modulation, birefringent

• Hatch positions xj, yi and polarity sign ei created sequentially 
using Monte-Carlo Metropolis, with repulsive interaction between 
hatches (autocorrelation of strain relaxation)
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Simulations for the parameters: 
• α=60µeV, β⊥=-35µeV, β||=-15µeV, nx=300, ny=200, r0=3.11µm, Teff=10
• M=3.5·10-5 me, 1ps pulse at normal incidence, diagonal polarization (\)
• 800µmx800µm, 1024x1024 grid points 
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yγ : exchanging x & y

xV (100µeV)

Dynamics:   
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Spectra:  

• cuts along x, \ and  _ polarized
• spatial structure of energy and linewidth

• gradual formation of pattern & localization


